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ABSTRACT The credibility of Artificial Intelligence (AI) models in medical imaging, particularly during 

the COVID-19 pandemic, has been challenged by reproducibility issues and obscured clinical insights. To 

address these concerns, we propose a Virtual Imaging Trials (VIT) framework, utilizing both clinical and 

simulated datasets to evaluate AI systems. This study focuses on using convolutional neural networks (CNNs) 

for COVID-19 diagnosis using computed tomography (CT) and chest radiography (CXR). We developed and 

tested multiple AI models, 3D ResNet-like and 2D EfficientNetv2 architectures, across diverse datasets. Our 

evaluation metrics included the area under the curve (AUC). Statistical analyses, such as the DeLong method 

for AUC confidence intervals, were employed to assess performance differences. Our findings demonstrate 

that VIT provides a robust platform for objective assessment, revealing significant influences of dataset 

characteristics, patient factors, and imaging physics on AI efficacy. Notably, models trained on the most 

diverse datasets showed the highest external testing performance, with AUC values ranging from 0.73 to 0.76 

for CT and 0.70 to 0.73 for CXR. Internal testing yielded higher AUC values (0.77 to 0.85 for CT and 0.77 

to 1.0 for CXR), highlighting a substantial drop in performance during external validation, which underscores 

the importance of diverse and comprehensive training and testing data. This approach enhances model 

transparency and reliability, offering nuanced insights into the factors driving AI performance and bridging 

the gap between experimental and clinical settings. The study underscores the potential of VIT to improve 

the reproducibility and clinical relevance of AI systems in medical imaging. 

INDEX TERMS Virtual Imaging trials, COVID-19, Computed tomography.

I. INTRODUCTION 

For effective development and optimization, artificial 

intelligence (AI) models typically require massive amounts 

of data. Even when large datasets are available for training, 

AI models often struggle to generalize, resulting in limited 

clinical applicability. This crisis of reproducibility was 

starkly evident during the COVID-19 pandemic when chest 

radiography (CXR) and computed tomography (CT) were 

initially employed for detecting and managing lung 

infections [1, 2]. In the rush to develop AI aides for 

radiologists, however, many studies reported unrealistic, 

near-perfect performances that dropped almost to chance 

upon external testing [3-9]. Failure of medical imaging AI 

models to generalize is a pervasive problem. There is a 

pressing need for an evaluation framework for medical 

imaging AI models that can assess the true performance. The 

4th COV19D Competition, as part of the CVPR 2024 

Workshop, highlights the ongoing efforts by the machine 

learning community to address challenges in COVID-19 

diagnosis through medical imaging [10]. When these AI 

models fail to generalize, we need to understand what out-

of-distribution factors (e.g., patient normal anatomy and 

disease, or imaging physics conditions) are driving the model 

performance. 

   Although imaging is no longer used for the primary 

diagnosis of COVID-19, this disease remains a relevant and 

valuable case study for several reasons. In an unprecedented 

effort, many large public datasets of medical images were 

released [11-18]. and an ongoing coordination effort 

continues to be led by the Medical Imaging and Data 
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Resource Center (MIDRC) [19].  Image data from up to 

thousands of patients led to a plethora of AI models for the 

diagnosis of COVID-19 [18, 20-25], yet a review of 62 

studies asserted that none of these models were fit for clinical 

use due to methodological flaws and underlying biases [18]. 

The lack of experimental controls in the clinical data also 

precluded further analysis for model explainability. The rare 

combination of so much data accompanied by widespread 

problems in reproducibility offers our field a rare 

opportunity to glean important lessons, which may inform 

not only our response to future health crises but also routine 

clinical practice. 

 

   A promising solution to this challenge lies in the use of the 

Virtual Imaging Trial (VIT) approach, which simulates three 

key components of an imaging trial: patients, scanners, and 

readers [26]. VITs provide practical opportunities to quantify 

the effects of imaging technologies and patient factors on 

radiological diagnosis. VITs allow the controlled 

comparison of alternative imaging modalities or the 

optimization of acquisition protocols. Previously, the VIT 

approach was demonstrated in simulated CT images using 

computational anatomical models of patients with and 

without COVID-19 pneumonia [27, 28]. To address 

reproducibility, a VIT framework can generate virtual image 
data with pixel-level ground truth for truly independent 

external validation, which helps tackle the ongoing 

reproducibility crisis in AI by allowing rigorous and 

unbiased evaluation of model performance across diverse 

scenarios. To provide transparency, the VIT approach can 

simulate a range of imaging technologies and patient 

characteristics, thus elucidating which factors drive model 

performance. In our study, virtual patients are modeled using 

computational anatomical phantoms, which replicate a 

diverse range of anatomies and pathologies, including 

various manifestations of COVID-19. These virtual patients 

are then imaged using simulated scanners, replicating the 

physical and technical characteristics of actual medical 

imaging devices, ensuring realistic imaging conditions. The 

readers, representing radiologists, are simulated to interpret 

the images, allowing us to evaluate the diagnostic 

performance of AI models under consistent conditions. By 

simulating these components, VITs enable independent 

validation and detailed analysis of the factors affecting AI 

model performance, addressing reproducibility issues 

effectively. This approach ensures that the models are 

evaluated in a variety of scenarios, leading to more reliable 

and generalizable AI systems in clinical practice. 

 

  Previously, we performed external validations of open-

source deep-learning models for case-level COVID-19 

detection with CT and CXR images [29, 30]. The current 

study builds upon that prior work by including simulated CT 

and CXR exams from the same virtual patients at effective 
doses ranging over multiple orders of magnitude that 

overlapped between the two modalities. Augmented with 

twice as many clinical datasets and multiple AI models 

compared to the prior study, we aimed to: 

FIGURE 1. Study design overview. 12,844 CT scans and 25,219 CXR images for COVID-19 diagnosis were drawn from 13 clinical datasets 
comprising single or multiple centers (Supplement Fig. 1-2). Multiple deep-learning-based models were developed using these clinical 
datasets. All models underwent internal testing (held-out from the same training dataset) and external testing (all other datasets). Further 
external testing was performed using virtually simulated CT and CXR images to analyze effect of patient and imaging physics factors. 
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• Unpack the interplay of dataset-model matching 

and mismatching on the results. 

• Compare model performance on virtual and clinical 

data. 

• Systematically assess CT and CXR from the same 

cases. 

• Evaluate the influence of patient- and physics-

based factors on the generalizability of the results. 

 

Our approach leverages the VIT framework to provide a 

controlled environment for evaluating AI models, ensuring 

robust and reproducible results. By simulating patients, 

scanners, and readers, VITs allow us to quantify the effects 

of various factors on radiological diagnosis and enhance the 

transparency and reliability of AI systems in medical 

imaging. 

 

 
II. LITERATURE REVIEW 

The development of AI models in medical imaging faces 

challenges in generalizability and reproducibility. Studies 

like Rubin et al.[1] and Kanne et al. [2] highlighted imaging 

protocol variability and early AI model limitations for 

COVID-19. Gunraj et al. [3] and Harmon et al. [4] showed 

high initial accuracy but significant performance drops in 

external validation. Roberts et al. [18] found none of the 

reviewed AI models fit for clinical use due to methodological 

flaws. Previous work involved VITs for validating deep-

learning models for COVID-19 detection using clinical and 

simulated datasets [29, 30]. Arun et al. [31] highlighted the 

limitations of Grad-CAM due to repeatability and 

reproducibility issues. 

 

 

 
III. METHOD 

Institutional Review Board approval was obtained for this 

exempt study that used only anonymized image data and 

simulated phantom data. We briefly outline our study design 

that is necessary to understand the experimental results and 

analysis. 

  Multiple lightweight convolutional neural network (CNN) 

models (detailed in Section III.D) with residual connections 

were developed to process CT or CXR images efficiently. 

These lightweight CNNs, designed to reduce computational 

complexity while maintaining high accuracy, were used to 

classify cases as positive or negative for COVID-19. 

Multiple clinical datasets were acquired [11, 13-15, 17, 22, 

32-35]. which vary in size, diversity, demographics, and 

class definitions. In addition, we simulated image data from 

a population of 4D-XCAT  

TABLE I 

Summary of Key Literature on AI in COVID-19 Imaging 

    

Study Focus Findings Limitations 

Rubin et al. [1] Role of chest imaging in 

COVID-19 

Multinational consensus on 

imaging protocols 

Lack of AI-specific insights 

Kanne et al. [2] COVID-19 imaging 

overview 

Summary of known and 

unknown aspects 

General overview, not AI-

focused 

Gunraj et al. [3] COVIDNet-CT AI model design for 

COVID-19 detection 

Performance drop in external 

testing 

Harmon et al. [4] AI for COVID-19 detection Multinational dataset 

evaluation 

Limited generalizability 

Javaheri et al. [5] CovidCTNet Open-source AI model for 

COVID-19 

Small cohort limitations 

Jin et al. [6] AI system development for 

COVID-19 

Performance evaluation Lack of external validation 

Bai et al. [7] AI augmentation of 

radiologist performance 

Comparative study Variability in external datasets 
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models with varying COVID-19 size and distribution, 

developed in a previous study then generating images using 

virtual CT and CXR scanners (DukeSim, CVIT, Duke 

University) [27].  The CNN models were trained using single 

and various combinations of clinical datasets. In parallel 

experiments, CT or CXR clinical data were analyzed for 

internal and external performance shift. The simulated data 

were reserved as a separate external validation. Finally, by 

varying the virtual imaging trial parameters, we explored 

how performance may be affected by factors pertaining to 

the patients (i.e., infection size) or imaging physics (i.e., 

effective dose and modalities). An illustration of the overall 

workflow of the analysis is presented in Figure 1. 

A. CLINICAL DATASET COMPILATION 

Define abbreviations and The clinical CT data included a 

total of 12,844 volumes of 7,452 patients from 10 datasets: 

RICORD [17], MosMed [14] BIMCV-COVID-19 +/- 

(BIMCV-V2) [13], COVID-CT-MD [11], CT Images in 

COVID-19 [12], PleThora [35], COVID19-CT-dataset [32], 

Stony Brook University COVID-19 Positive Cases (COVID-

19-NY-SBU) [15], A Large-Scale CT and PET/CT Dataset 

for Lung Cancer Diagnosis (Lung-PET-CT-Dx) [33], and 

Lung Image Database Consortium / Image Database 

Resource Initiative (LIDC-IDRI) [36]. These datasets had 

different prevalences of COVID-19 positive and negative 

images (Figure 3a) and demographics. Summary statistics 

regarding the datasets are detailed in Table 2.  

  Furthermore, all ten clinical CT datasets above were 

combined to create the U-10 CT dataset, which provides a 

more diverse dataset for factors such as patient population 

and demographics, disease appearances, CT systems, and 

imaging protocols. Figure 4 shows the inclusion and 

exclusion criteria followed in the curation of the clinical CT 

data. 

  CXR analysis included 25,219 clinical CXR images 

collected from 3 datasets: Fricks et al. [22], BIMCV [13], 

and COVIDx-CXR-2 [34]. These datasets also had different 

prevalences of COVID-19 positive and negative images 

(Figure 3b) and demographics. All three clinical CXR 

datasets were also combined to form the U-3 CXR dataset. 

In one of the datasets, COVIDx-CXR-2, positive images 

were from different sources, but the negative class was much 

larger and mainly from one source, namely the RSNA 

Pneumonia Detection Challenge [37] (Figure 3b). To ensure 

a balanced training and validation process for the 

unified U-3 dataset, the negative cases were randomly 

subsampled to achieve an equal distribution between 

the two classes. 

 

 
(a) 

 
(b) 

FIGURE 3. Histograms showing distribution of COVID-19 positive (+) 
and negative (-) cases among different datasets (clinical and 
simulated) (a) CTs and (b) CXRs. In the latter, COVID-CXR-2 is further 

decomposed into its subsets. Log scale is used to show the large 
variation in numbers of exams. Note that the prevalence varies 
greatly, and some datasets contain only one class. 

 

B. SIMULATED DATASET CONSTRUCTION 

The XCAT computational phantoms used in this study are 

based on the method described in detail by Abadi et al. [27] 

An overview of the method is illustrated in Figure 2. 

Creating computational phantoms for COVID-19 is a  

 

FIGURE 2. An overview COVID-19 computation phantoms development and simulated CT and CXR images. 
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detailed process that unfolds in three distinct stages: 

constructing the body framework, detailing the 

morphological characteristics of lung abnormalities, and 

replicating the texture and composition of affected lung 

tissues. 

  Body Framework Construction: The process begins with 

the development of the body's framework using the 4D 

extended cardiac-torso (XCAT) model from the group at 

Duke University [38, 39], The XCAT model provides a 

comprehensive foundation with detailed anatomy, dynamic 

organ motions, and textured tissues, built from real patient 

data, ideal for diverse COVID-19 patient simulations.  

 

Detailing Lung Abnormalities: The second stage involves 

the meticulous detailing of lung abnormalities typical of 

COVID-19, such as ground-glass opacities (GGO) and 

consolidations. This is achieved by examining CT scans 

from clinically confirmed 20 patients of COVID-19, where 

the abnormalities were manually segmented and modeled in 

a series of surfaces mimicking the morphology [27], These 

modeled features are then integrated into the XCAT 

phantoms, ensuring a match in body dimensions, gender, and 

age, to accurately represent the disease's manifestations 

within the computational models.  

 

Replicating Lung Tissue Composition: The last phase 

involves fine-tuning the phantom's lung textures and 

materials to mirror the properties of the lung tissues affected 

by COVID-19 within the phantoms. This involves adjusting 

the lung parenchyma's texture in the computational model to 

reflect the changes observed in actual CT images, such as the 

addition of fluids in the case of GGO or the uniform texture 

seen in consolidations. These adjustments ensure that the 

simulated lung tissues closely mimic the radiological 

TABLE II 

Clinical CT patient datasets utilized in model development and testing. The combination of all ten constitutes the U-10 

CT dataset. Demographic values are reported as the percentage of patient sex and mean of patient age. 

 

No Dataset Source Demographics Category Train* Validation* Test* 

1. RICORD [17] 

(1b,1b) 

Turkey, 

USA, 

Canada, 

Brazil 

44% women 

Age 54 ±17 

COVID+ 66 (90) 22 (32) 22 (33) 

COVID- 70 (72) 23 (23) 24 (25) 

Total 136 (162) 45 (55) 46 (58) 

2. MosMed [14] Russia 56% women 

Age 47 

COVID+ 512 (512) 170 (170) 174(174) 

COVID- 152 (152) 50 (50) 52 (52) 

Total 664 (664) 220 (220) 226 (226) 

3. BIMCV-V2 

[13] 

Spain 42% women.  

Age 64 ±16 

COVID+ 455 (1421) 152(484) 152(470) 

COVID- 728 (2077) 239(706) 268(823) 

Total 1183 (3498) 391 (1190) 420 (129) 

4. COVID-CT-

MD [11] 

Iran 40% women. 

Age 51 ±16 

COVID+ 101(101) 33 (33) 35 (35) 

COVID- 81 (81) 27 (27) 28 (28) 

Total 182 (182) 60 (60) 63 (63) 

5. An et al. [12] Multi-

center 

N/A COVID+ 379 (391) 126 (129) 127 (130) 

6. PleThora[35] USA 31% women.  

Age 68 ± 10 

COVID- 241 (241) 80 (80) 81 (81) 

7. COVID19-CT 

[32] 

Iran 39.1% women 

Age: 47 ± 16 

COVID+ 604 (604) 201 (201) 202 (202) 

8. COVID-19-

NY-SBU[15] 

USA 43% women.  

(Age: ranges 

between 

18-90 years) 

COVID+ 251 (739) 84 (278) 84 (282) 

9. Lungs-CT-Dx 

[33] 

China 46% women, 

Age 61 ± 10  

COVID- 207 (479) 69 (154) 70 (164) 

10. LIDC-IDRI 

[36] 

USA N/A  COVID- 606 (611) 202 (204) 202 (203) 

 Total / U-10 

CT  

   4453 (7571) 1478 (2571) 1521 (2702) 

 

Note-* Number of patients (number of scans), COVID+= COVID-19 positive, COVID-= COVID-19 negative, COVID-

19-NY-SBU = Stony Brook University COVID-19 Positive Cases, Lungs-CT-Dx= A Large-Scale CT and PET/CT Dataset 

for Lung Cancer Diagnosis. 
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features of COVID-19, allowing for realistic simulation 

outcomes.  

 

Simulated Images: These COVID-19 XCAT computational 

phantoms were imaged using DukeSim [27, 28], a validated 

radiographic simulator that combines ray 

TABLE III 

Clinical CXR Patient Cohorts utilized in model development and testing. Demographic values are reported as the 

percentage of patient sex and mean of patient age. 

 

No Dataset Source Demographics Category Train Validation Test 

1. Fricks et al.[22] Iran, Italy, 

USA 

N/A COVID+ 544 136 171 

COVID- 174 44 55 

Total 718 180 226 

2. BIMCV-V2 [13] Spain 46% Women 

Age 63 ± 17 

COVID+ 2694 674 843 

COVID- 2265 566 708 

Total 4959 1240 1551 

3. COVIDx-CXR-2 

[34] 

Multi-center N/A COVID+ 1727 431 200 

COVID- 11034 2759 200 

Total 12761 3190 400 

 Total   N/A  18438  4610  2177 

4 U-3 CXR dataset  N/A COVID+ 4965 1241 1214 

COVID- 4965 1241 963 

Total 9930 2482 2177 

 

 
tracing and Monte Carlo simulation to produce realistic CT 

and chest radiographs, tailored to specific scanner protocols 

and physics. 

  Simulated CT and CXR datasets were generated in three 

steps using a virtual imaging trial (VIT) framework [26, 27], 

These virtual patient models with or without the disease were 

imaged using an x-ray image acquisition simulator 

(DukeSim, CVIT, Duke University) [27, 28] Virtual scans 

were repeated at different effective doses (0.01, 0.1, 0.3, 1.6, 

5.6, and 11.2 mSv). The dose settings were selected to 

represent a wide range of clinical applicability, as well as a 

direct comparison of CT and CXR images at the same 

hypothetical dose. For the CXR acquisitions, two 

commercial post-processing algorithms (denoted as 

Algorithm A and B to maintain. For the CXR acquisitions, 

two commercial post-processing algorithms (denoted as 

algorithms A and B to maintain confidentiality) were applied 

to examine the effects of vendor heterogeneity.  Table 4 

shows the characteristics of the generated CT and CXR 

images.  

 

 The concept of a simulated dataset is integral to our study, 

providing a robust alternative to conventional datasets. 

These datasets offer precise control over imaging 

parameters, including patient anatomy, disease 

characteristics, and imaging conditions, ensuring 

consistency and reproducibility. Unlike conventional 

datasets, which often suffer from variability in patient 

demographics and imaging protocols, simulated datasets 

enable a controlled and repeatable generation of imaging 

data. As shown in Table 5, simulated datasets possess 

advanced features such as comprehensive patient-level, 

slice-level, and pixel-level annotations, and the ability to 

image the same virtual patient with both CT and CXR at 

multiple doses. These features facilitate rigorous evaluation 

and validation of AI models, allowing for systematic studies 

of the effects of various factors on model performance. By 

integrating simulated datasets with clinical datasets, we aim 

to enhance the generalizability and reliability of AI systems 

in medical imaging, ensuring their applicability in diverse 

clinical scenarios. 

C. PRE-PROCESSING 

Standard preprocessing was performed on both CT and 
CXR images. Each CT volume was resampled to voxel 
dimensions of  2 mm × 2 mm × 5 mm (w, h, d). 
Intensities were clipped between -1000 to 500 HU, then 
standardized to a mean of 0 and standard deviation of 1. 
To reduce computational cost and the influence of 
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FIGURE 4. Flowchart of inclusion and exclusion criteria for the chest CT scans. n= number of CT volumes. A total of 16,949 CT scans of 11,166 
patients were used for model development and testing. There were ten clinical datasets: RICORD [17], MosMed [14], BIMCV-COVID-19 +/- (BIMCV-
V2),[13] COVID-CT-MD [11], CT Images in COVID-19 [12], PleThora [35], COVID19-CT-dataset,[32] Stony Brook University COVID-19 Positive 

Cases (COVID-19-NY-SBU) [15], A Large-Scale CT and PET/CT Dataset for Lung Cancer Diagnosis (Lungs-CT-Dx) [33], and Lung Image Database 
Consortium / Image Database Resource Initiative (LIDC-IDRI) [36], These ten clinical datasets were united into the U-10 CT Dataset. Additionally, 
simulated data were from the Center for Virtual Imaging Trials CT Dataset, Duke-CVIT-CT [27]. 

background organs, three-dimensional (3D) patches of 
size 160×160×96 (w, h, d) were centered about the 
lungs. The patch size was based on average lung size 
plus a margin to allow for patient variability. CXR 
images were resized and randomly cropped to a size of 
300x384 pixels, then standardized to 0.5 mean and 0.5 
standard deviation to maintain consistency with the pre-
trained dataset. 

TABLE IV 

Simulated (CVIT-COVID) dataset. 

 

Effective dose 

(mSv) 

Number of virtual exams 

COVID-19 Negative 

                                                   CVIT-COVID-CT 

0.3 50 40 

1.6 50 40 

5.6 50 40 

11.2 50 40 

Total (CT) 200 160 

                                                     CVIT-COVID-CXR 

0.01 50 40 

0.10 50 40 

0.3 50 40 

Total (CXR) 150 120 

 

D. MODEL DEVELOPMENT AND TRAINING 

We previously confirmed that complex deep learning models 

can reproduce the near-perfect performance reported in 

previous studies. Due to fundamental problems with the data, 

however, that performance would drop in external testing to 

chance [29, 30]. To minimize overtraining, we intentionally 

selected lightweight ResNet-like models [40, 41] and trained 

four separate CT-based models using the RICORD, 

MosMed, BIMCV, and U-10 CT datasets. Additionally, the 

ResNet architecture has consistently proven to perform well 

in various medical imaging tasks [29, 40, 41]. Similarly, for 

CXR, we trained four different EfficientNetv2 [42] models 

using the data from Fricks et al., BIMCV, COVIDx-CXR-2, 

and U-3 CXR datasets, respectively. Each dataset was 

randomly divided by the patient into subsets of training 

(60%), validation (20%), and testing (20%). No cross-

validation was performed; instead, we utilized a train-

validation-test split. As we aimed to assess the utility of 

virtual data to assess clinically trained algorithms, for virtual 

data, no training was applied – the model as trained by 

clinical data was applied to the entire dataset for testing. 

  The clinical datasets were selected to encompass a range of 

study samples. Specifically, limited datasets included 

RICORD for CT and Fricks et al. for CXR, while U-10 CT 

and U-3 CXR were more diverse. Detailed descriptions of 

the models and training processes can be found in the 

Methods (Figure 1). 

  CT models used a simple 3D CNN inspired by ResNet [43], 

the architecture is shown in Figure 5. After initial 

convolution, features were learned across two resolution 

scales, then halved by max-pooling (pooling size 2×2×2) 

while doubling the number of filters. The last R-block 

features underwent batch normalization, rectified linear unit 

(ReLu), global max-pooling, dropout (dropout rate 0.5), and 

finally, a dense classification layer with sigmoid activation 
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for binary case-level COVID-19 detection. Additionally, we 

applied L2 regularization with a coefficient of 0.001 to 

prevent overfitting. The stochastic gradient descent (SGD) 

optimizer was used to optimize the weights with decay 

learning rate, and weighted binary cross-entropy was used as 

the loss function. Weights were initialized to a uniform 

distribution. To retain the natural prevalence, no class 

balancing was performed during training. The 

hyperparameters for the CT models were set as follows: 

initial learning rate of 1e-6, maximum learning rate of 1e-4, 

learning rate decay of 1e-2, batch size of 24, and 300 training 

epochs. CXR models were based on Efficientnetv2 with the 

original architecture [42], SGD was selected as the optimizer 

with the learning rate scheduler, [44] initial learning rate of 

0.01, and cross-entropy loss. All models were developed 

using Python TensorFlow v2.6 and PyTorch deep learning 

frameworks. All model weights, initial hyper-parameters, 

and code are made publicly accessible [45]. 

 

 

FIGURE 5. 3D CNN architecture for CT classification of COVID-19. The 

classification module is a 3D Resnet-like model with 2 R-Blocks in each 

resolution. The number of filters is denoted as 𝒇. The final output is a tensor 

of the probability of being COVID-19 positive or negative. 
 

E. EVALUATION AND STATISTICAL ANALYSIS 

We conducted a series of studies to assess the model 

performance on clinical datasets and simulated datasets. For 

the simulated dataset, we further evaluated the influence of 

physics factors, i.e., the imaging modality and the acquisition 

of effective dose. acquisition-based evaluation performed to 

assess model performance based on different imaging 

protocols and effective radiation doses used during image 

acquisition.  We additionally evaluated the effect of the 

patient factor of infection size, to understand the impact of 

infection severity on model performance. The simulated 

COVID-19 pneumonia cases were divided into two groups: 

"higher" infection (above the median value of 2.6% of total 

lung volume) and "lower" infection (below this median 

value). This approach helps in assessing how well the AI 

models perform across a spectrum of disease severity and 

identifying any performance biases or limitations. Other 

classifications in our study are based solely on the presence 

or absence of COVID-19, allowing us to assess the models' 

ability to distinguish between COVID-19 positive and 

negative cases. To support our findings and assess the 

significance of the results, all performances were evaluated 

using the receiver operating characteristic area under the 

curve (AUC) with 95% confidence interval (CI) calculated 

by the DeLong method as implemented by pROC 1.16.2 in 

R 3.6.1 with 2000 bootstrapping samples [46]. 

 

IV. RESULTS 

A. EVALUATION OF THE MODELS ON CLINICAL 
DATASETS 

As depicted in Figure 6, clinical CT and CXR models 

exhibited a consistent drop in performance from internal to 

external testing, and those differences often exceeded the 

confidence intervals. While some loss of performance is 

expected in external testing, these remarkably consistent 

differences indicate systemic differences across these 

datasets. The CT models showed an internal validation AUC 

range of 0.69 to 0.85, whereas external testing consistently 

dropped to between 0.54 and 0.76. Similarly, for CXR 

models, internal performance ranged from an AUC of 0.77 

to 1, while external testing AUC again dropped to a range of 

0.51 to 0.73. Models trained on the most diverse datasets (U-

3 CXR and U-10 CT) consistently yielded a testing 

performance that was the highest or second highest. Notably, 

despite its size, the COVIDx-CXR-2 dataset for CXR was 

very biased, resulting in perfect internal validation and near-

perfect external testing even for the U-3 model that was 

trained on all three datasets. 

 

B. EVALUATION OF THE MODELS ON SIMULATED 
DATASETS 

As shown in Figure 6, compared to clinical data, all CT 

models performed consistently with intermediate AUC 

values on these simulated data. In other words, simulated 

data was closer to the training clinical data than some of the 

actual clinical data, which suggests the simulated data is 

adequately realistic and often may be less biased. Among the 

CT models, training with the most diverse U-10 CT dataset 

yielded the highest testing performance on the simulated CT 

images, outperforming all three of the clinical datasets. This 

is remarkable since those three clinical datasets contributed 

to the U-10 CT training dataset, whereas the simulated data 

is completely independent. Conversely, all CXR models 

displayed comparably poor performance on the simulated 

CXR images. 

C. PATIENT-BASED EVALUATION 

Assessing the effect of infection size on the performance 

of models, Figure 7 shows all models performed better 

on both CT and CXR images with higher infection 

compared to images with lower infections. 
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TABLE V 

Attributes of CT and CXR datasets. Note that simulated data are the only ones that contain all 

attributes, including the advanced features where the same virtual patient can be imaged with both 

CT and CXR at multiple doses, with multiple CXR post-processing. X= available. 

 

 

Datasets 

 

Class Type Label Level Advanced 

features COVID-19 

positive 

COVID-19 

negative 

Patient-

level 

Slice-

level 

Pixel- 

level 

CT datasets 

RICORD[17] X X X    

MosMed[14] X X X    

BIMCV-Iteration 

2[13] 

X X X    

COVID-CT-MD[11] X X X X   

An et al. dataset[12] X  X    

COVID19-CT-

dataset[32] 

X  X    

COVID-19-NY-

SBU[15] 

X  X    

Lungs-CT-Dx[33]  X X    

LIDC-IDRI[36]  X X    

Duke-CVIT-CT X X X X X X 

CXR datasets 

Fricks et al. 

dataset[22]  

X X X N/A   

BIMCV-2[13] X X X N/A   

COVIDx-CXR-2[34] X X X N/A   

Duke-CVIT-CXR X X X N/A X X 
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(a) CT models 

 

(b) CXR models 

FIGURE 6. Confusion matrix of case-level COVID-19 detection performance of (a) CT and (b) CXR models. Training dataset is shown in rows 
and testing dataset in columns; diagonal represents internal validation, while off-diagonal entries are external testing. Additional external 
testing on simulated images is shown on the right. Performance is reported as receiver operating characteristic area under the curve with 

95% confidence interval. All models generally performed worse on external testing with both clinical and simulated data. However, models 
trained with the union datasets (U-10 CT and U-3 CXR) consistently yielded the highest external testing performance. Furthermore, 
simulation testing consistently provided intermediate results that may be more indicative of true performance. 

D. ACQUISITION-BASED EVALUATION 

Assessing the effect of infection size For the same virtual 

patients, we assessed the performance of models over a 

wide, overlapping range of effective doses for the virtual  

CT and CXR acquisitions. As shown in Figure 8, the 3D 

CT models consistently outperformed the 2D CXR models, 

but the confidence intervals for the AUCs overlapped. 

Within each modality, although the effective dose (mSv) 

varied by 30-fold to represent the widest possible range of 

clinical use, there was no statistically significant change in 

performance [39, 47]. 

 
V. Discussion 

There has been considerable research to develop AI models 

to improve radiology diagnosis. However, the practical 

application of these models in clinical practice has been 

hindered by two related challenges. First, models often 

underperform when applied to a new dataset with different 

attributes such as patient demographics, acquisition 

protocols, or scanner vendors. Second, most models function 

as “black boxes” that lack interpretability, making it difficult 

to determine which factors account for the poor performance. 

These issues became particularly evident during the urgent 

scientific response to COVID-19, when many early studies 

reported high performances that did not generalize [20, 23, 

25, 29, 30, 48]. Although biases in AI models for healthcare 

may be unavoidable, a comprehensive understanding of such 

factors, supported by effective external testing, can raise the 

confidence that such models are trustworthy [18, 20, 49]. 

This study addresses the problem of biases in medical 

imaging AI models by leveraging clinical and simulated data 

for independent testing, thus enabling the evaluation of both 

generalizability and interpretability. The clinical relevance 

of these findings is substantial, as improving the 

generalizability and transparency of AI models can enhance 

their reliability in diverse clinical settings. By ensuring that 



 

VOLUME XX, 2017 7 

AI models perform consistently across various datasets and 

provide interpretable results, this research has the potential 

to significantly impact medical practice. It can lead to more 

accurate diagnoses, personalized treatment plans, and 

ultimately better patient outcomes, thereby integrating AI 

more effectively into routine clinical workflows. 

 

 

 

 

  

(a) CT models (b) CXR models 

FIGURE 7. Both (a) CT and (b) CXR models each trained on four datasets (represented on the x-axis), consistently demonstrated superior 
performance in "higher infection" cases, where the pneumonia volume exceeded the median, compared to "lower infection" cases that fell 
below the median. For CXR, results were almost identical for the two post-processing algorithms, so only algorithm A is shown. Error bars 
represent the 95% confidence interval. 

We compiled a large cohort of clinical CT and CXR images 

from dataset resources representing over 22,000 patients. 

Despite the large amount of training data, however, model 

performance was still impaired due to class imbalance and 

confounding issues such as radiographic markers, incorrect 

image orientation, and collimator edges [20, 25, 50]. Proper 

data curation is time-consuming and requires domain 

expertise in medical imaging, rendering this process 

prohibitively costly.[51] Therefore, external validation of AI 

models is essential to rule out biases [18, 20]. To address 

these needs, this study utilized a VIT simulation platform 

[26, 27]. Using simulated CT and CXR images provides two 

crucial advantages. First, simulated image data enables 

external validation that is not only truly independent but also 

controlled. Second, the VIT framework allows the evaluation 

of the models under different patient- and physics-based 

factors, which offers interpretability and reveals clinical or 

technical insights. VIT simulations facilitate conducting 

medical imaging studies in a trustworthy, reproducible, and 

practicable manner. 

  Our primary objective was to analyze the impact of dataset 

variability on model development. Unlike most studies, we 

intentionally chose to use very lightweight networks to 

minimize overfitting [40, 41]. Nevertheless, all models still 

dropped in performance substantially from internal to 

external testing, which was in line with previously reported 

studies [20, 25, 29, 30]. Since model performance reflects 

the underlying data, this generalizability gap suggests the 

lack of diversity in the existing datasets with regard to 

institution bias, patient demographics, disease appearances, 

and image quality [20, 23, 50]. To minimize such bias, we 

trained on the combination of multiple diverse datasets, U-

10 CT and U-3 CXR, and the resulting models outperformed 

the single-dataset models in independent testing. The model 

trained on the diverse U-10 CT dataset demonstrated very 

consistent performance across all three clinical datasets with 

an AUC of approximately 0.73. Unlike the individual testing 

results showing considerable high and low bias, this 

moderate result is more credible and may indicate a more 

representative performance for this challenging clinical task. 

These general trends were also observed for the CXR 

datasets but with considerable residual bias due to the 

disproportionate influence of the COVIDx-CXR-2 dataset, 

which is much larger than other datasets and leads to 

confounding bias as its positive and negative cases come 

from different institutions. This quandary shows that despite 

rigorous training and external testing, AI models can still be 

affected by fundamental data biases. The VIT process proved 

to deliver a more realistic portrayal of true clinical 

performance. When many models were tested on simulated 

images, performances fell consistently within the middle of 

the range of external testing on clinical datasets, suggesting 

that the simulations presented data with an appearance that 

was realistic and relevant. This is highly encouraging 

considering the models were applied to the virtual data 

without even being trained on them, highlighting the 

potential generalizability of simulated datasets to evaluate 

AI-based diagnosis algorithms.  Unlike clinical datasets, the 
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simulated images are further free of institutional bias or other 

confounding factors, because the VIT framework offers 

precisely reproducible controls in terms of patient sampling 

as well as physical image formation. This enabled us to 

compare identical virtual patients with and without COVID-

19 and also to conduct virtual imaging of each patient using  

 

 

 

FIGURE 8. Simulated images were used to evaluate physics-based factors. Although models consistently performed better on CT over CXR, the 
differences were not significant at the shared dose of 0.3 mSv. Within each modality, performances were also not significantly different across a 
wide range of effective dose. Error bars correspond to 95% confidence interval. 

 

both CT and CXR. The degree of experimental control 

provided by VITs is not physically possible in real clinical 

trials. The VIT process proved to deliver a more realistic 

portrayal of true clinical performance. When many models 

were tested on simulated images, performances fell 

consistently within the middle of the range of external testing 

on clinical datasets, suggesting that the simulations 

presented data with an appearance that was realistic and 

relevant. This is highly encouraging considering the models 

were applied to the virtual data without even being trained 

on them, highlighting the potential generalizability of 

simulated datasets to evaluate AI-based diagnosis 

algorithms.  Unlike clinical datasets, the simulated images 

are further free of institutional bias or other confounding 

factors, because the VIT framework offers precisely 

reproducible controls in terms of patient sampling as well as 

physical image formation. This enabled us to compare 

identical virtual patients with and without COVID-19 and 

also to conduct virtual imaging of each patient using both CT 

and CXR. The degree of experimental control provided by 

VITs is not physically possible in real clinical trials. 

  Our VIT analysis further provided intriguing insights into 

the effects of patient- and physics-based factors driving AI 

performance. Regardless of the training datasets for both the 

CT and CXR models, there was a noticeable increase in 

performance when the COVID-19 infection size was larger 

than the median value. For both imaging modalities, 

performances stayed consistent even across a 30-fold range 

in effective dose (which well exceeds the range in clinical 

practice), suggesting that dose may not be as relevant for the 

AI detection of diffuse diseases such as pneumonia. In stark 

contrast to the model evaluation on clinical data, our analysis 

confirmed that CT outperformed CXR, which was consistent 

with expectations since 3D CT scans provide superior spatial 

information over 2D CXR images.  

  This study had several limitations. Although the simulated 

CT and CXR images realistically reproduced both 

anatomical and physical processes, they were generated from 

a pool of fifty virtual patients with variable anatomy and 

severity of the disease. Consequently, simulation testing 

showed consistent trends but with large confidence intervals. 
The minimal impact of imaging dose observed in our study 

might be influenced by down-sampling during the 

preprocessing. Additionally, the study did not account for 

potential variability in scanner-specific imaging 

characteristics, which could affect model performance in 

real-world settings. Future work will increase the number of 

computational phantoms to represent even larger and more 
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diverse patient populations and explore the inclusion of 

additional imaging parameters to improve realism. In terms 

of the network architectures, each modality was analyzed 

using a single lightweight design, foregoing extension 

experiments with other networks. Expanding the model 

evaluation to include more complex architectures could 

provide insights into generalizability across different 

network types. Models were developed only to conduct case-

level detection, which is the only annotation available in 

almost all datasets. Furthermore, the label of COVID-19 as 

negative or positive was defined by each dataset, and those 

standards varied widely, including radiologist assessment or 

different diagnostic tests [1]. Some datasets included both 

COVID-19 pneumonia and other types of pneumonia, which 

may not be readily differentiated by imaging alone. Finally, 

future work should also aim to address these limitations by 

incorporating more detailed multi-class annotations and 

evaluating model performance under different disease 

classification scenarios. 

 

VI. CONCLUSION 
 

AI-based diagnosis models hold the potential to 

revolutionize healthcare. However, factors contributing to 

model bias remain underexplored, especially in the medical 

imaging domain. An essential prerequisite to clinical 

deployment is a robust external evaluation. The VIT 

framework plays a crucial role in addressing the ongoing 

reproducibility crisis in AI models by providing the 

necessary image data that is objective and controlled. By 

enabling consistent evaluation across diverse scenarios, VIT 

not only helps to identify bias but also facilitates 

improvements in model robustness and generalizability. By 

studying patient- or physics-based factors influencing model 

performance, these procedures also offer interpretability and 

opportunities for model refinement. Through these 

contributions, virtual imaging trials can enhance clinical 

trials, making them faster, more rigorous, and more 

reproducible.  
 

 

APPENDIX A 
DATA AVAILABILITY 

The clinical data utilized in this study are open-source and can 

be referenced via the citation in Table 2. The authors are 

committed to promoting transparency and open science. 

Reasonable requests for access to an anonymized version of 

the private datasets (Duke-CVIT-CT and Duke-CVIT-CXR) 

can be made by contacting the corresponding author. Upon 

publication, all model weights, initial hyper-parameters, and 

code will be publicly accessible at 

https://gitlab.oit.duke.edu/cvit-public/cvit_revicovid19 
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