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Overview| COVID-19
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Overview| COVID-19 @

Google Scholar
* 91,400 results

Associated to COVID-19, Machine-learning, and Deep-learning.




Overview| Concerns

o e — Near perfect diagnostic performance

» Common pitfalls and recommendations for using
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Objective | Primary Objective

Investigating variability of diagnostic performance
based on disease appearance andimaging properties.



Objective| Challenges

— Challenging in real
clinical setup

Challenges

— Health concerns-
Ionizing radiation



Overview| Probable Solution

Probable solution ':Q:'-Virtual Imaging Trials (VITs)
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Real trial

Virtual trial

— Virtual imaging trial (VIT) is a process of simulating imaging evaluations with
varying factors such as computational human phantoms (CPs), imaging
scanner systems, and virtual readers .

—AI model belongs in the virtual reader category.



Method| Study Design

* Open-Source clinical data for model development.
* Generating Simulated CT scans utilizing VITs platform.
e Clinical Vs . Virtual performance analysis.

Virtual Imaging Trials Inference Analysis
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Method| Open-source Datasets

12,000+ open-source clinical CT scans from 6,847 patients.

COVID-CT-MD COVID-19-NY-
SBU
- + 4000
MosMed COVID-19 LIDC-IDRI
3500 -
¢
g 2500 -
MIDRIC-RICORD Lungs-CT-Dx 3
13,1b g
£ 15001
BIMCV COVID19-CT- Z 10004
dataset 600 -
COVID-19 - 0
0
NIb-tst - PleThora
dataset

|

[ CovID-19 +

I COVID-19 -
n |l o m N
[ | M [ | [ [ | |

— - || [ [ | || [ || [ | -
i S — — —
MIDRIC- MosMed BIMCV COVID-CT NIH-1st PleThora COVID19 COVID Lungs- LIDC-
RICORD -MD Dataset CT- -19 CT-Dx IDRI

dataset -NY-SBU
Dataset

U-10 Dataset




Method |

Model Development
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Method| Virtual Imaging Trials (VITs)

Simulated
Clinical CT COVID-19 XCAT DukeSim Simulated CT

Infection o scans

E. Abadi, W. Paul Segars, H. Chalian, and E. Samei, "Virtual Imaging Trials for Coronavirus Disease
(COVID-19)," AJR Am J Roentgenol, vol. 216, no. 2, pp. 362-368, Feb 2021, doi: 10.2214/AJR.20.23429.



Method | Virtual Imaging Trials (VITs)

Ground Truth 4D XCAT COVID-19 phantoms

E. Abadi et al. (2021).



Method | Virtual Imaging Trials (VITs)

4D XCAT phantom
developed at Duke
University

Simulated CT

Simulated Xray

E. Abadi et al. (2021).



Method | Virtual Imaging Trials (VITs)

Duke-CVIT-CT / DukeSim Dataset

Number of Volume

Dose Level
(mAs) COVID-19 Normal
5.7 50 40
28.5 50 40
57 50 40

Total 150 120



Method | Clinical Vs Virtual Data

Class Type Label Level Same CT scan

COVID-19 COVID-19 Patient- Slice-level Pixel- with multiple

positive negative level level

Datasets dose levels
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Method |Inclusion and Exclusion

- Virtual Imaging
Open-source Clinical CT Trials (VITS)
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Method | Inference



Results| Clinical and Virtual Data

Test MIDRIC- MosMed BIMCV-V2 | U-10-Dataset | Duke-CVIT-
(COVID+/-) RICORD (174/52) (470/823) (1159/1201) CT
*(33/25) (150/120)
Training (COVID+/-)

MIDRIC-RICORD (90/72) 0.69 0.66 0.54 0.54 0.57
[0.55,0.84] [0.58,0.74] [0.51,57] [0.52-0.57] [0.50,0.64]

MosMed (512/152) 0.76 0.87 0.63 0.68 0.69
[0.64,0.88] [0.81,0.92] | [0.60,0.66] [0.66,0.70] [0.63,0.76]

BIMCV-V2 (1421/2077) 0.64 0.58 0.77 0.68 0.68
[0.49,0.78] [0.50,0.67] | [0.74,0.79] [0.66,0.70] [0.62,0.75]

U-10-Dataset 0.74 0.73 0.73 0.85 0.79
(3926/3768) [0.61,0.87] [0.66,0.80] | [0.70,0.76] [0.84,0.86] [0.73,0.84]




Results| Clinical and Virtual Data

Performance dropped due to domain-shift, simulated data consistent
with multiple clinical test set.
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Results| Dose-level Analysis

No dose dependence for all models
tested on simulated data
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Results| COVID-19 Infection Size
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Results| COVID-19 Infection Size

Infection volume strongly affects performances
across all models and doses
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Conclusion

e Performance dropped due to domain-shift, simulated data
consistent with multiple clinical test set.

* No dose dependence for all models tested on simulated data.

* |nfection volume strongly affects performances across all
models and doses

e Virtual Imaging Trials make it possible to answer clinically
relevant questions.
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